NAG Toolbox for MATLAB

e02bd

1 Purpose

e02bd computes the definite integral of a cubic spline from its B-spline representation.

2 Syntax

[dint, ifail] = e02bd(lamda, c, 'ncap7', ncap7)

3 Description

e02bd computes the definite integral of the cubic spline s(x) between the limits x=a and x=b, where a and b are respectively the lower and upper limits of the range over which s(x) is defined. It is assumed that s(x) is represented in terms of its B-spline coefficients c_i , for $i=1,2,\ldots,\bar{n}+3$ and (augmented) ordered knot set λ_i , for $i=1,2,\ldots,\bar{n}+7$, with $\lambda_i=a$, for i=1,2,3,4 and $\lambda_i=b$, for $i=\bar{n}+4,\bar{n}+5,\bar{n}+6,\bar{n}+7$, (see e02ba), i.e.,

$$s(x) = \sum_{i=1}^{q} c_i N_i(x).$$

Here $q = \bar{n} + 3$, \bar{n} is the number of intervals of the spline and $N_i(x)$ denotes the normalized B-spline of degree 3 (order 4) defined upon the knots $\lambda_i, \lambda_{i+1}, \dots, \lambda_{i+4}$.

The method employed uses the formula given in Section 3 of Cox 1975a.

e02bd can be used to determine the definite integrals of cubic spline fits and interpolants produced by e02ba.

4 References

Cox M G 1975a An algorithm for spline interpolation J. Inst. Math. Appl. 15 95-108

5 Parameters

5.1 Compulsory Input Parameters

1: lamda(ncap7) – double array

lamda(j) must be set to the value of the jth member of the complete set of knots, λ_j for $j = 1, 2, ..., \bar{n} + 7$.

Constraint: the lamda(j) must be in nondecreasing order with lamda(ncap7 - 3) > lamda(4) and satisfy lamda(1) = lamda(2) = lamda(3) = lamda(4) and lamda(ncap7 - 3) = lamda(ncap7 - 2) = lamda(ncap7 - 1) = lamda(ncap7).

2: c(ncap7) - double array

The coefficient c_i of the B-spline $N_i(x)$, for $i=1,2,\ldots,\bar{n}+3$. The remaining elements of the array are not used.

5.2 Optional Input Parameters

1: ncap7 - int32 scalar

Default: The dimension of the arrays lamda, c. (An error is raised if these dimensions are not equal.)

[NP3663/21] e02bd.1

e02bd NAG Toolbox Manual

 $\bar{n} + 7$, where \bar{n} is the number of intervals of the spline (which is one greater than the number of interior knots, i.e., the knots strictly within the range a to b) over which the spline is defined.

Constraint: $ncap7 \ge 8$.

5.3 Input Parameters Omitted from the MATLAB Interface

None.

5.4 Output Parameters

1: **dint – double scalar**

The value of the definite integral of s(x) between the limits x = a and x = b, where $a = \lambda_4$ and $b = \lambda_{\bar{n}+4}$.

2: ifail – int32 scalar

0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail = 1

ncap7 < 8, i.e., the number of intervals is not positive.

ifail = 2

At least one of the following restrictions on the knots is violated:

```
lamda(ncap7 - 3) > lamda(4), lamda(j) \ge lamda(j - 1),
```

for $j = 2, 3, \dots, ncap7$, with equality in the cases j = 2, 3, 4, ncap7 - 2, ncap7 - 1, and ncap7.

7 Accuracy

The rounding errors are such that the computed value of the integral is exact for a slightly perturbed set of B-spline coefficients c_i differing in a relative sense from those supplied by no more than $2.2 \times (\bar{n} + 3) \times$ machine precision.

8 Further Comments

The time taken is approximately proportional to $\bar{n} + 7$.

9 Example

e02bd.2 [NP3663/21]

```
6;

6];

c = [10;

12;

13;

15;

22;

26;

24;

18;

14;

12;

0;

0;

0;

0;

0;

0;

0];

[dint, ifail] = e02bd(lamda, c)
```

[NP3663/21] e02bd.3 (last)